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Abstract-The steady-state flow structure, temperature and heat transfer in a square enclosure heated and 
cooled on opposite vertical walls and containing cold water near its density maximum are investigated 
numerically. Interpretation of the results hinges upon a dimensionless density distribution parameter which 
fixes the orientation of the hot and cold wall temperatures with respect to the extremum temperature and 
also serves to characterize the distribution of the buoyancy force in the enclosure. Multicellular flow 
structures are observed for certain ranges of the density distribution parameter independent of the value 
of Rayleigh number (10’ < Ra < 106). The effect of the density distribution parameter on cross-cavity heat 
transfer is found to be substantial and is discussed in the context of the changing flow structure. Com- 

parisons with previous studies in the literature are made. 

1. INTRODUCTION 

TI-IE MAJORITY of work in natural convection deals 
with fluids the densities of which monotonically 
increase or decrease linearly with temperature. How- 
ever, for some fluids such as water and molten 
bismuth, antimony and gallium, the density-tem- 
perature relation exhibits an extremum. Because the 
coefficient of thermal expansion changes sign at this 
extremum, the linear relation p = pO[( 1 - p( F- To,>] is 
inadequate for these fluids when the range of tem- 

perature under consideration is in the neighborhood 
of the density extremum. Among the anomalous 

liquids mentioned above, water is by far the most 
important because its density extremum occurs near 
4°C at atmospheric pressure. A number of studies 
have investigated the effect of the density extremum 

for water in detail, however, a large proportion of the 
work relates to external boundary layer flow past 
vertical or horizontal walls. The convection of cold 

water (i.e. near 4°C) in enclosures has been addressed 
in several studies. Forbes and Cooper [l] carried out 
a numerical study of the transient cooling of water 
in a rectangular enclosure through 4°C from above. 

Vasseur and Robillard [2] investigated the transient 
cooling of water in a rectangular enclosure with ver- 
tical and horizontal walls maintained at 0°C. The 

same authors [3, 41 studied supercooling as well as 
the transient behavior of cold water in a rectangular 
enclosure with a constant rate of cooling at the bound- 
ary. Altimer [5] has examined the flow in a rectangular 
box filled with a cold water-saturated porous media 
while Nguyen et al. [6] considered the case of a hori- 
zontal annulus filled with cold water. Also, Lin and 
Nansteel [7] studied the case of cold water convection 

in a vertical annulus in which the effects of curvature 
are discussed in detail. A number of experimental and 
analytical studies have been carried out for the steady 
natural convection of water near 4°C in a rectangular 
enclosure with vertical walls maintained at two differ- 
ent temperatures while the horizontal walls are adia- 
batic. Watson [8] seems to have been the first to inves- 
tigate natural convection in a differentially heated 

cavity filled with cold water. In ref. [8] it was found 
that the anomalous density-temperature relationship 
may result in a dual, counter-rotating cell flow pattern 
which significantly inhibits cross-cavity heat transfer. 

The effect of temperature-dependent viscosity was 

also addressed in ref. [8] and was found to result in 
changes in magnitude rather than the character of the 
flow. Nansteel et al. [9] studied the heat transfer and 

flow structure in a differentially heated rectangular 
enclosure containing cold water by a perturbation 
technique in the small Rayleigh number regime. The 

numerical study of Desai and Forbes [lo] considered 
the natural convection of cold water in a rectangular 
enclosure in which one vertical wall was held at 0°C 
(or 2°C) while the opposing wall was maintained at 
8°C (or 6°C). Aspect ratios of 1 and 3 were considered. 
Robillard and Vasseur [ll] performed a numerical 

study of a cold water-filled square enclosure in which 
one vertical wall was kept at 0°C while the temperature 
of the other vertical wall was varied between 4 and 
12°C. Thermal boundary conditions on the horizontal 
walls were either linear in temperature or adiabatic. 
Seki et al. [ 121 carried out experimental and numerical 
work on the same problem for an enclosure height of 
100 mm. In ref. [12] aspect ratios of 1, 2, 5, 10 and 20 
were considered. It was noted that aspect ratios near 
unity resulted in the maximum heat transfer. Recently, 
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NOMENCLATURE 

CP 
constant pressure specific heat X dimensionless horizontal coordinate, 

9 gravitational acceleration X/L 

k thermal conductivity x horizontal coordinate 

L length of enclosure side Y dimensionless vertical coordinate, y/L 
Nu(x, y) local Nusselt number, equation v vertical coordinate. 

(18) 

Nu(x) vertically averaged Nusselt number, Greek symbols 

equation (19) LY thermal diffusivity 

P modified pressure, F + pCgj MI constant in density-temperature 
-, 

P pressure relation, equation (7) 

Pr Prandtl number, v/cc B coefficient of thermal expansion 

4 exponent in density-temperature V kinematic viscosity 
relation, equation (7) 

4 
I, heat flux : 

dimensionless vorticity, fL’/v 
vorticity 

R density distribution parameter, P density 

(TC-Jl(Th--C) 4 dimensionless temperature, 

Ra Rayleigh number, (F- FC)/(jih_ FC) 

gPm~IL3(~~- ~JYIPC”~ dimensionless streamfunction, 4/v 

i= temperature $ streamfunction. 

t dimensionless time, iv/L2 
i time Subscripts 

l4 dimensionless horizontal velocity, 

UL/v “b 
cold wall 
hot wall 

u horizontal component of velocity density extremum 

V dimensionless vertical velocity, CL/v : reference state 

B vertical component of velocity l/2 vertical mid-plane of the enclosure. 

Inaba and Fukuda [ 13, 141 investigated the effect of 
inclination angle on the natural convection of cold 
water in a rectangular enclosure both experimentally 
and numerically. In ref. [ 131 it was found that the two 
counter-rotating eddies are strongly influenced by the 
angle of inclination. 

ai 
*=O 

The present study addresses the steady convection 
of cold water in a square enclosure. The vertical walls 
are maintained at different temperatures while the 7, 
horizontal boundaries are insulated. A non-dimen- 
sional parameter (similar to the one used first by 
Gebhart and Mollendorf [ 151 and later by Altimer [5] 
and Nguyen et al. [6]) is used to characterize the Y 

orientation of the vertical wall temperatures with 

respect to the extremum temperature. This parameter 
also characterizes the distribution of buoyancy forces 
in the enclosure and hence provides a very convenient 
and concise generalized framework for studying the 

P 
ai _(J 

ry - 
effects of changing wall temperature. Numerical cal- --L 

_i_ 

culations are made to separately study the effects of 
Rayleigh number and buoyancy force distribution. 

FIG. 1, Differentially heated square enclosure. 

The flow structure and temperature fields are dis- 
cussed as well as the overall heat transfer. are maintained at temperatures ini, and TC while the 

horizontal walls are insulated, Fig. 1. The enclosure 

2. MATHEMATICAL FORMULATION 
is supposed sufficiently long in depth normal to the 
plane of Fig. 1 that the flow field is essentially the 

The configuration considered here is that of a same in planes of different depth. The enclosed fluid 
square enclosure of side length L. The vertical walls is pure water and the temperature range of interest 
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is, 0°C < F= < rh 6 2O”C, where density inversion Introducing equations (5) and (7), equations (2) and 
phenomena are significant. (3) become 

2.1. Governing equations 
In formulating the governing equations the fol- 

lowing assumptions are made : 

DZ? 
--_= _LJ?+vV2~ (8) Dt P= 82 

(1) the flow is laminar and two-dimensional ; 
(2) physicat properties, except for the density in the 

buoyancy force term, are constant and are evaluated 
-)~~--_iim~~]+vv2u. (9) 

at the cold wall temperature, r=,; 
(3) viscous dissipation is negligible. 

2.2. Stream function-vorticity ($- 4) formation 
The pressure is eliminated by cross-differentiating 

With these assumptions, the governing equations, and combining equations (8) and (9). Also, the 

in their unsteady form, are streamfunction $ and vorticity [are defined as 

!?!!+E=o 
aa a? 

a+ _ aJ; 
YjYj=ul z=- 6, r= -vJ;. (10) 

__=: _L!E+vv2u- DE Defining the non-dimensional variables 

Df P= ax 
(2) 

DV --_=:__7+Bv2&-cLg I ap 
Dt pE ay Pf 

(31 
IL 

Ill?- 
u = -- 

V1 
--I== ClV27 
Dt ’ (4) 

Defining the modified pressure, p = j’ -t_ pcgj, yields 
*=!! +FL2 t=E 

V’ v ’ L2 

the gove~ing equations in dimensionless form 
(X) become 

Initially, the fluid is assumed to be motionless and 
at the uniform temperature (Fh+iic)/2. The corre- 
sponding initial and boundary conditions are 

t=o: 

Dl Ra 

Dt- Pr 
- -q,#-R,Y-“(d_-R)$ +V2r (11) 

WJ 1 
E = prv2Q’ (12) 

v21+Q = -& (13) 

The initial and boundary conditions take the form 

(6) 
t=O: 

u=v=o, 4=1/2 

t>o: 

u=ij=:o. on the boundary. 
MAY) = 1, cp(l,Y) = 0 (14) 

a4 
Many correlations have been used to represent the 

Y&(x.o)=~(x,1)=o 
density of cold water as a fiction of temperature, e.g. 
Kell [16], Chen and Miller0 1171 and Gebhart and $ = !!!! = 2 - 0 on the boundary. 
Mollendorf [18]. Though most of these correlations ax ay - 7 

are in close agreement, the correlation of Gebhart and 
Mollendorf is especially simple and very accurate. It 

Additional dimensionless parameters appearing in 

has been widely used and will be adopted here because 
equations (11) and (12) are the Rayleigh and Prandtl 
numbers 

of its simple form. In ref. f IS] the density of pure water 
at atmospheric pressure is given as Ra = SPrn@,L3(~~ - EY, Pr = v 

&VU u 
P = Pm[l -~,I~-~nIl”l (7) 

and the density distribution parameter 

where pm = 999.9720 kg me3, t(, = 9.297173 x 10e6 
(oC)--q, T= = 4.029325”C and q = 1.894816. In the 

F -7 
R=$+=. (1% 

range 0 < F 6 20°C this equation agrees with the very h c 

precise density relation of Kell [ 161 to within 6 p.p.m. This parameter will be seen to be very important due 
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to its fundamental effect on the flow field and heat 
transfer in the enclosure and is essentially equivalent 
to the ‘inversion parameter’ used by Nguyen et al. [6] 
in their horizontal annulus study. The density dis- 
tribution parameter essentially fixes the orientation of 
the maximum density temperature F,,, with respect to 
the vertical wall temperatures F,, and Fc,. As shown in 
ref. [9] the case R < 0 (I=,, > Tc > F,,,) results in density 
increasing monotonically with x across the enclosure. 
This density distribution results in a clockwise recir- 
culation pattern. When R > 1 (T,,, > Th > Fe) the dis- 
tribution is reversed and hence a counter-clockwise 

pattern results. When R is in the range 0 < R < 1 the 
wall temperatures Fb and i=c straddle the maximum 
density temperature T,,,. In this case as x varies from 
0 to 1 density increases to a maximum p = pm at 
T= F,,, and then decreases. As a result, maximum 
density fluid at temperature T,,, lies between warm low 
density fluid near the hot wall and cool fluid, also of 
relatively low density near the cold wall. Hence this 
heavier fluid at T= Tm in the enclosure interior 
descends while the lighter fluid adjacent to the vertical 
boundaries ascends, giving rise to a pair of counter- 
rotating vortices arranged horizontally in the enclo- 
sure. It will be seen later, however, that this two-cell 
structure may not occur for R 6 1 and R 2 0 due to 
viscous effects. 

conductive and convective modes, i.e. 

aT 
q” = 4% +p,c,(T- T&i. 

In dimensionless form, this becomes 

N”(x9 Y) = k(Fh _ Fc) = - ax z +Prc#m. (18) 

Then the Nusselt number averaged over a vertical 
cross-section is 

3. NUMERICAL SOLUTION 

The symmetry of the density equation (7) with 
respect to the extremum temperature suggests that $ 

and 4 may also be symmetric in some fashion. In fact 
it can be easily shown that the system, equations (11)) 
(14) exhibits the symmetry properties 

V&y;R)= -$(l-x,~;l-R) 

c/~(x,y,R)= 1-4(1-x,y;l-R). 
(16) 

Hence the flow and temperature fields for the case 
R = 1/2+AR can be obtained from the case 
R = l/2-AR using equations (16). In particular, for 
R = l/2, equations (16) state that the flow structure 
is symmetric with respect to the vertical centerline of 
the enclosure, x = l/2. 

Numerical results were obtained by solving equa- 
tions (1 l)( 13) subject to the accompanying boundary 
and initial conditions (14) by a finite-difference 
method. A false-transient approach was used to 
obtain steady-state solutions. First-order forward 
differences were used to approximate time derivatives 
while central difference approximations were used for 
spatial derivatives. The resulting set of algebraic equa- 
tions was solved by the alternating direction implicit 
(ADI) technique which yields a system of algebraic 

equations in tridiagonal form to which the Thomas 
algorithm [19] can be applied. The size of the time 
step which led to a stable calculation in the present 

work depended upon grid size, Rayleigh number and 
the initial conditions. The results for the lowest Ray- 
leigh number considered (Ra = 103) were obtained 
from a rest initial condition ($ = 5 = u = v = 0, 
4 = l/2). For higher values of Ra, the steady solution 
for a somewhat smaller Rayleigh number was used as 
the initial state. It is also noted that the steady-state 
solution was found to be independent of the choice of 
initial condition. 

2.3. Heat transfer 
The local heat flux in the horizontal direction in the 

enclosure can be expressed as the superposition of 

For each case (Ra, R) mesh refinement was con- 
tinued until adequate pointwise convergence was 
observed in $, 5 and 4 as well as convergence of global 
heat transfer. The mesh size required for satisfactory 
convergence was found to be strongly dependent on 
Ra, as shown in Table 1, for the case R = 213. In 
Table 1, Nu,, and Nu, were obtained from equation 

(17) 

q”L 

Nu(x) = 
S’ 

Nu(x, Y) dy. (19) 
0 

Table 1. Convergence of Nu and $ with mesh size, R = 2/3 

Ra Mesh 

lo3 21x21 
21x21 

lo4 31x31 
41x41 
21x21 3.323 3.356 3.326 0.698 

IO5 31x31 3.334 3.347 3.348 0.703 
41x41 
21x21 

IO6 
31x31 
41x41 
61x61 

NW, Nu,,, Nu, ((I mai 

1.018 1.019 1.018 0.0386 
1.600 1.618 1.603 0.260 
1.601 1.612 1.609 0.260 
1.602 1.612 1.610 0.260 

3.344 3.348 3.349 0.706 
5.860 6.854 6.566 1.431 
6.554 6.546 6.513 1.372 
6.560 6.525 6.552 1.386 -0.579 
6.561 6.534 6.560 1.390 -0.562 

G mm 

-0.00027 
-0.0037 
-0.0036 
-0.0036 
-0.070 
-0.067 
-0.065 
-0.778 
-0.609 
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(19) with x = 0 and 1, respectively. For the case 

R = l/2, advantage was taken of the symmetry prop- 
erty (16), so that calculations were necessary for one- 
half of the enclosure only. All results were obtained 

with Pr = 13.0. 

4. RESULTS AND DISCUSSION 

4.1. Streamfunction and temperature 
The steady flow patterns which result for the square 

enclosure containing cold water are in general a conse- 
quence of the local balance between buoyancy, viscous 
and inertia forces. For small values of Ra, however, 
inertia effects are relatively unimportant so that an 
approximate balance between viscous and buoyancy 
forces results. Figure 2 shows the results for $ at 
Ra = IO3 for values of the density distribution par- 
ameter R = 0.4, l/2, 0.55, 213 and 314. For Ra = lo3 
the temperature field deviates from the pure con- 
duction field, 4 = 1 -x, only slightly due to con- 
vective effects. However, the perturbation on the pure 
conduction temperature field due to convection 
increases in magnitude with IR - l/2). In the case, 
R = l/2, the hot and cold wall temperatures perfectly 
straddle Fm. From the symmetry relations (16) the 
maximum density contour (coinciding with the tem- 
perature contour, &,, = R = l/2) is located at the 
enclosure mid-plane x = l/2. Dense fluid near x = l/2 
falls while less dense fluid adjacent to the hot and cold 
walls rises. This results in a symmetric pair of counter- 
rotating vortices in the left and right halves of the 
enclosure. As R increases (decreases) the maximum 
density contour moves toward the hot (cold) wall. 
As a result the counter-clockwise-rotating cell on the 
right in the case R = 0.4 becomes stronger and larger 
at the expense of the clockwise-rotating cell on the left 
as R increases. For R = 2/3 the cell on the left has 
divided into two separate clockwise-rotating cells in 
the upper and lower left-hand corners of the enclo- 
sure. In this case even though the maximum density 
contour (&, = 2/3) is located approximately at 
x = l/3, upflow on the hot wall occurs only near the 
corners of the enclosure. The circulation of the coun- 
ter-clockwise right-hand vortex has become so strong 
that it drags (by virtue of the fluid’s viscosity) rela- 
tively light fluid downward along the hot wall, over- 
powering the upward buoyancy force there. When 
&,, = R = 3/4, even the two corner cells are eliminated 
by the strong counter-clockwise-rotating cell on the 
right resulting in a completely unicellular flow. In the 
instance R = 1, density increases with temperature 
and hence decreases with x everywhere in the enclo- 
sure resulting in a single counter-clockwise-rotating 
cell. 

Figure 3 shows the $ and 4 fields for R = l/2 and 
Ra = lo4 and 106. Note that the bicellular flow struc- 
ture observed for Ra = 103, R = l/2, Fig. 2, persists 
for lo4 ,< Ra < IO6 with the cells becoming more 
angular in shape. Due to symmetry (16) the flow in 

the left and right halves of the enclosure is identical 

except for the sense of rotation. Notice, Fig. 3, Ra = 
106, that the &field is developing boundary layer- 
like characteristics with increasing Ra near x = l/2 
as well as near the vertical walls. The large gradients 
in temperature near x = l/2, y 5 1, are due to the 
intense circulation of the two counter-rotating cells 
which deposits warm fluid from the hot wall and cool 
fluid from the cold wall in the top-center region of the 
enclosure. 

In the case R = 0.55, Fig. 4, there is no spatial 
symmetry. The maximum density contour r$,,, = 
R = 0.55 has now shifted (from x = l/2 for R = l/2) 
toward the hot wall. With increasing Ra the larger 
counter-clockwise cell adjacent to the cold wall 
becomes more dominant. Cool fluid is swept across 
the upper boundary and into the upper left-hand cor- 
ner of the enclosure. This shifts the maximum density 
contour &, = 0.55 toward the hot wall in the upper 
half of the enclosure. As a result, for Ra = lo6 there 
is no upflow along the upper portion of the hot wall 
because the strong counter-clockwise vortex over- 
comes the (upward) buoyancy force in the fluid 
directly adjacent to the upper portion of the hot wall. 
It will be seen later that this direct contact of the 
cooler fluid with the upper section of the hot wall 
substantially increases heat transfer across the enclo- 
sure above the symmetrical, R = l/2, case. Note also 
that at higher values of Rayleigh number (Ra = 106) 
the structure of the flow and temperature fields to the 
right of the maximum density contour, $,,, = 0.55, are 
developing some characteristics which are observed in 
the convection of Boussinesq fluids at large Ra. For 
example it is observed, Fig. 4, Ra = 106, that fluid in 
the large counter-clockwise cell exhibits an increasing 
degree of density stratification with increasing Ra. 
Note, however, that here, warm fluid underlies cooler 
fluid since density is increasing with temperature for 
4 < &,, = 0.55. The basic structure of the flow field 
for R = 2/3 exhibited the same features as the case 
R = 0.55 with the left-hand clockwise-rotating cell 

confined to a smaller region in the lower left-hand 
corner of the enclosure. For R = 2/3 the small cell in 
the upper left-hand corner at Ra = 10’ (Fig. 2) does 
not appear for lo4 < Ra < 106. For R = 0.75 the flow 
consists of a single counter-clockwise vortex for 
Ra = 103, Fig. 2, while for lo4 < Ra < lo6 the flow 
structure is similar to the case R = 2/3, i.e. a weak 
clockwise rotating cell is observed in the lower left- 
hand corner of the enclosure. 

4.2. Heat transfer 
Table 2 lists the vertically averaged Nusselt number 

(19) for six values of R in the range 0.4 < R < 1 and 
Ra = 103, 104, 10’ and 106. Due to the symmetry 
in the temperature field (16) heat transfer is sym- 
metric with respect to R = l/2, hence Nu(R = 0) = 
Nu(R = l), Nu(R = l/3) = Nu(R = 2/3), etc. Figure 
5 shows the variation of Nu with R for fixed Ra. 
The most striking feature of this figure is the 
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R = 0.4 

-.- 

R=lf2 

R=0.55 R = 213 

6.9 

R = 3/L 

FIG. 2. Streamfunction ($ x 103) contours for Ra = IO'. 

minimum in heat transfer at R = lj2. This minimum 
has also been observed in previous works, however, 
typically, the variation of Nu with increasing i=,, is 
examined for fixed Z& When Nu is displayed in this 
manner both R and Ra are varying. In Fig. 5 the 
effect of the density distribution parameter is clearly 
displayed without introducing additional Rayleigh 
number effects. The minimum at R = l/2 in Fig. 5 is 
due to the symmetric, dual-cell flow structure which 
results when Tb and FC straddle the maximum density 
temperature F,,,. The dual-cell structure prohibits 
direct convective transfer between the hot and cold 
walls. Each cell behaves like an insulator preventing 

warm (cool) fluid from the hot (cold) wall from com- 
ing in contact with the cold (hot) wall. The only direct 
thermal communication between the two walls occurs 
near x = l/2, where the warm and cool streams meet 
and energy is transferred primarily by conduction. 
Heat transfer increases very sharply for R-values away 
from R = l/2 when Ra is large because then one of 
the two cells in the enclosure wets both walls (see Fig. 
4, Ra = 106). Figure 6 shows the variation of Nu with 
Ra for various values of R. For large Ra the heat 
transfer behavior is similar to that observed for a 
Boussinesq fluid, that is 

NU cc Ra0.29 
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FIG. 3. Streamfunction (II/ x IO’) and temperature (4 = O(O.l)l) contours for R = l/2. 

independent of R. The behavior for large Ra is seen 
to blend smoothly into the conduction dominated 
regime, Nu N 1, for smaller Ra. 

4.3. Comparison with previous work 
In earlier work on cold water enclosure convection, 

heat transfer results are often presented with the cold 
wall temperature Fc held fixed while T,, is varied. If 

this is done both Ra and R are varying parameters. 
For completeness the results of the present calculation 
are plotted in this way, Fig. 7, along with the constant 
viscosity results of Watson [S] and the variable prop- 
erty results of Inaba and Fukuda [13]. In ref. [8] cal- 
culations of Nu were obtained for a square enclosure 
with F= = 0°C Pr = 13.7 and 

while in ref. [13] i;, = 0°C gL3/vz = 1.02 x 10’ and 
Pr = 13. Note that the present results are in good 
agreement with both refs. [8, 131 for F,, 6 8°C beyond 
which both refs. [8, 131 yield lower estimates of the 
heat transfer. In the case of Watson’s results, one 
factor which may contribute to this discrepancy is the 
density-temperature relation used. The relation due 
to Watson differs from the very accurate p - Frelation 

of Kell [16] by as much as 26 p.p.m. while equation 

(7) is accurate to within less than 6 p.p.m. in the range 
0-20°C. Recall that the density difference between 0 
and 4°C (and hence the sole driving force for con- 
vection) is only about 130 p.p.m. Also, the value of /?, 
used is critical. In the comparison with ref. [8], at each 

value of F,, the present value of Ra is calculated as 

Ra = AP,~: 
P,IBcl 

x lo3 = 136.64TI (20) 

where the property value /$ = - 6.805 x lo- ’ K- has 
been [20]. of given by 
p-F relation is -8.94x lo-‘K-l which is about 
30% larger. The value given by equation (7) is 
PC = -6.1 x 10-‘K-l. Using a larger value of Bc in 
equation (20) would result in a smaller value of Ra 
and hence smaller values of Nu for the present cal- 
culation in the comparison of Fig. 7. The discrepancy 
observed between the present results and the results 
of Inaba and Fukuda [ 131 might also be due, in part, 
to differences in the p-i’ relation used. However, it is 
also likely that differences are present due to property 

(v> k) variations with temperature which are 

accounted for by Inaba and Fukuda but are not 
accounted for in the present study. Also, some of the 
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-9.2 34.0 

Ra =lOL 

-240 

Ra=106 

FIG. 4. Streamfunction (1/1 x 10’) and temperature (I#I = O(O.l)l) contours for R = 0.55. 

Table 2. Nusselt number variation with R and Ra 

R 

Ra 0.4 l/2 0.55 213 314 I 

10’ 1.007 1.0009 1.002 1.018 1.038 1.119 
lo4 1.391 1.076 1.202 1.608 1.834 2.278 
lo5 2.853 2.080 2.416 3.347 3.823 4.709 
106 5.685 4.090 4.860 6.560 7.445 9.195 

discrepancy may be due to discretization error in the 
calculation of ref. [13]. Inaba and Fukuda use a 
21 x 21 finite difference grid and upwind differencing 
to make computations for Ra as large as 3.5 x 10’. 
Note, from Table 1 that at Ra = lo6 a 21 x 21 mesh 
is quite inadequate to resolve Nu even when employing 
the more accurate central difference approximation. 
Figure 8 shows the horizontal temperature profile 
at the enclosure midheight for R = l/2 and Ra = 
6.3 x lo4 for ref. [13] and the present study. Note that 
the results of ref. [13] show a quite mild horizontal 
temperature gradient near the center of the enclosure, 
x N l/2, while the present results suggest that a ther- 
mal boundary layer is beginning to form where the 
two symmetrical counter-rotating rolls meet (see also 
Fig. 3). The profile due to ref. [13] appears to have 

much the same shape as one would expect in a uni- 
cellular Boussinesq case, that is, most of the tem- 
perature change occurs near the heated and cooled 
walls. For reasons which are not clear the temperature 
profile of ref. [ 131 gives very little evidence of the dual- 
cell structure even though the results of ref. [ 131 for $ 
agree quite well with the present findings. 

5. CONCLUSIONS 

The flow structure, temperature field and heat 
transfer in a square enclosure containing cold water 
have been calculated numerically. A parameter, R, 
introduced through scaling of the governing 
equations, was used to fix the orientation of the hot 
and cold wall temperatures with respect to the extre- 
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FIG. 5. Heat transfer variation with R. 

mum temperature. This parameter was also found to 
be convenient for characterizing the distribution of 
density and hence the buoyancy force distribution in 
the enclosure. For 0 < R < 1 the relationship between 
fluid density and temperature in the enclosure has an 
extremum and hence regions of the flow field exhibit 
buoyancy force reversals which under some cir- 
cumstances result in multicellular flows. The flow was 
shown to be symmetric (in the sense of equations (16)) 
with respect to the density distribution parameter 
value R = l/2. The effects of R (0 ,< R < 1) and Ray- 
leigh number (lo3 < Ra < 106) on the flow and heat 
transfer were examined separately. It was found that 
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FIG. 7. Heat transfer variation with inh, j=c = 0°C: ---, 
Watson [8], gl&IL’/v,a, = 103K-‘, Pr = 13.7; -.-, Inaba 
and Fukuda [13], gL3/vf = 1.02x lo’, Pr = 13; -, 

present. 

while R determines, to a large extent, the number and 
sense of circulation of the cells in the flow, Rayleigh 
number affects, for the most part, only the cell shapes 
and locations within the enclosure. Boundary layer 
effects were noted for large values of Ra. A rather 
pronounced minimum in cross-cavity heat transfer 
was observed for R = l/2 in which case the hot and 
cold wall temperatures straddle the extremum tem- 
perature. The resulting symmetrical, counter-rotating, 
dual-cell flow structure greatly inhibits convective 
transfer between the heated and cooled walls. Com- 
parisons with previous cold water studies indicated 
good agreement in the heat transfer only for R 5 l/2. 

Ra 

FIG. 6. Heat transfer variation with Ra. 
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FIG. 8. Horizontal temperature profile at y = l/2, i;h = 8°C 
i;, = 0°C: ---, Inabaand Fukuda [13], &“/vi = 1.02 x lo’, 

Pr = 13 ; --, present. 

Substantial differences from the present results were 
found in the temperature field behavior predicted in 

ref. [ 131. 
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CONVECTION THERMIQUE NATURELLE DANS UNE CAVITE CARREE CONTENANT 
DE L’EAU PRES DE SON MAXIMUM DE DENSITE 

R&urn&-&r etudie num~riquement la structure de l’ecoulement permanent, la temperature et le transfert 
thermique dans une cavite carrel chauffee et refroidie sur les parois verticales opposees et qui contient de 
l’eau froide proche de son maximum de densite. L’interpretation des resultats repose sur un parametre 
adimensionnel de distribution de densite qui fixe l’orientation des temperatures des parois chaude et froide 
par rapport a l’extremum de temperature et qui sert aussi a caracteriser la distribution de la force de 
flottement dans la cavitb. Les structures multicellulaires sont observees pour certains domaines du parametre 
de distribution de densite independamment de la valeur du nombre de Rayleigh (10) < Ra < 106). L’effet 
du parametre de distribution de densite sur le transfert a travers la caviti est tres sensible et on le discute 
relativement aux changements de structure de l’ecoulement. Des comparaisons sont faites avec les etudes 

anterieures. 
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WARMEUBERTRAGUNG DURCH NATURLICHE KONVEKTION IN EINEM 
QUADRATISCHEN GEFASS, DAS WASSER IM BEREICH DES 

DICHTEMAXIMUMS ENTHALT 

Znsammenfaasung-Die stationlren Strijmungsstrukturen, die Temperaturverteilung und die Wlrme- 
iibertragung in einem quadratischen GefaD, das auf zwei gegeniiberliegenden Seiten beheizt bzw. gekiihlt 
wird und kaltes Wasser im Bereich des Dichtemaximums enthllt, werden numerisch untersucht. Die 
Auswertung der Ergebnisse konzentriert sich auf den dimensionslosen ‘Dichteverteilungs-Parameter’, der 
die Lage der Temperaturen an der heiBen bzw. kalten Wand in Bezug auf die Extremtemperatur festlegt und 
aul3erdem die Auftriebsverteilung im Behalter beschreibt. Fur bestimmte Bereiche des Dichteverteilungs- 
Parameters werden unabhangig von den Werten der Rayleigh-Zahl (10’ < Ra < 106) multizellulare 
Striimungsstrukturen beobachtet. Es wurde festgestellt, da13 der EinfluB des Dichteverteilungs-Para- 
meters auf die Warmeiibertragung im GeWB von grundsatzlicher Bedeutung ist; dieser EinfluB wird 
im Zusammenhang mit der sich lndernden Stromungsstruktur diskutiert. Es wurden Vergleiche mit 

Untersuchungen angestellt, welche in der Literatur beschrieben sind. 

CBOBO~HOKOHBEKTHBHbIti TEHJIOI-IEPEHOC B HOJIOCTM KBAJIPATHOFO 
CEHEHIDI, 3AIIOJIHEHHOm BOjJOH, HJIOTHOCTb KOTOPOI? BJIM3KA K 

MAKCPiMAJIbHOR 

AmoTamm-%cnetiHo wccnenymTcr cramioaapabre crpyrcrypa reqenria, rehmeparypnoe none II ren- 
nonepenoc B HarpesaeMoii u 0xnawaeMofi Bnonb sepTsiKanbHblxnpoTanonononnibm cTeHoK nonocrn 

KBa,lpaTHOrO‘SIeHWI,3a,,OnHeHHOii XOnOnHOti BO~Ofi,IUTOTHOCTb KOTOPOfi 6nexa K MaKCHMa,,bHOi$.B 

KawcTBe ~~~HMHO~O napaMeTpa anK utiTepnpeTawia pe3ynbTaToB BbI6paa 6e3pa3hfepHbG napaMeTp 

pacnpeneneHu ~I~OTHOCTU, xapaKTepu3yrouviG ornmnie TehfnepaTyp xononnoii w ropnreii cTeHoK OT 
3KcTpeManbHoii TeMnepaTypu,aTaKmepacnpeneneHwe nonbeMHoii canbr B nonocru. B onpe~enerino~ 
nnana3one 83Menemiri napahse-rpa pacnpeneneuua nno-ruocrn, tie 3anncameh4 OT Benwimm swcna P3nen 
(lo35 Ra I 106), Ha6JIIOn~TC5I MHoronYeWcTbte CT~YKT~~M TeSeHwi. 06HapymeHa oTwrnBna# 3aBw 

CBMocTb TennonepeHoca nonepeK nonocrn 0~ BenasiHbt napahfeTpa pacnpeneneHkla ~JIOTHOCTH. 

06cyncnaeTcK A3MeHeHne 3~oi? 3aBBcnMocTn npa B3MeHeHHH ~TpyK~ypb~ TeqeIsiK. npoeeneH0 cpasae- 


