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Abstract—The steady-state flow structure, temperature and heat transfer in a square enclosure heated and
cooled on opposite vertical walls and containing cold water near its density maximum are investigated
numerically. Interpretation of the results hinges upon a dimensionless density distribution parameter which
fixes the orientation of the hot and cold wall temperatures with respect to the extremum temperature and
also serves to characterize the distribution of the buoyancy force in the enclosure. Multicellular flow
structures are observed for certain ranges of the density distribution parameter independent of the value
of Rayleigh number (10° < Ra < 10%). The effect of the density distribution parameter on cross-cavity heat
transfer is found to be substantial and is discussed in the context of the changing flow structure. Com-
parisons with previous studies in the literature are made.

1. INTRODUCTION

THE MAJORITY of work in natural convection deals
with fluids the densities of which monotonically
increase or decrease linearly with temperature. How-
ever, for some fluids such as water and molten
bismuth, antimony and gallium, the density-tem-
perature relation exhibits an extremum. Because the
coefficient of thermal expansion changes sign at this
extremum, the linear relation p = p,[(1 —(T— T,)] is
inadequate for these fluids when the range of tem-
perature under consideration is in the neighborhood
of the density extremum. Among the anomalous
liquids mentioned above, water is by far the most
important because its density extremum occurs near
4°C at atmospheric pressure. A number of studies
have investigated the effect of the density extremum
for water in detail, however, a large proportion of the
work relates to external boundary layer flow past
vertical or horizontal walls. The convection of cold
water (i.e. near 4°C) in enclosures has been addressed
in several studies. Forbes and Cooper [1] carried out
a numerical study of the transient cooling of water
in a rectangular enclosure through 4°C from above.
Vasseur and Robillard [2] investigated the transient
cooling of water in a rectangular enclosure with ver-
tical and horizontal walls maintained at 0°C. The
same authors (3, 4] studied supercooling as well as
the transient behavior of cold water in a rectangular
enclosure with a constant rate of cooling at the bound-
ary. Altimer [5] has examined the flow in a rectangular
box filled with a cold water-saturated porous media
while Nguyen et al. [6] considered the case of a hori-
zontal annulus filled with cold water. Also, Lin and
Nansteel [7] studied the case of cold water convection

in a vertical annulus in which the effects of curvature
are discussed in detail. A number of experimental and
analytical studies have been carried out for the steady
natural convection of water near 4°C in a rectangular
enclosure with vertical walls maintained at two differ-
ent temperatures while the horizontal walls are adia-
batic. Watson [8] seems to have been the first to inves-
tigate natural convection in a differentially heated
cavity filled with cold water. In ref. [8] it was found
that the anomalous density—temperature relationship
may result in a dual, counter-rotating cell flow pattern
which significantly inhibits cross-cavity heat transfer.
The effect of temperature-dependent viscosity was
also addressed in ref. [8] and was found to result in
changes in magnitude rather than the character of the
flow. Nansteel er al. [9] studied the heat transfer and
flow structure in a differentially heated rectangular
enclosure containing cold water by a perturbation
technique in the small Rayleigh number regime. The
numerical study of Desai and Forbes [10] considered
the natural convection of cold water in a rectangular
enclosure in which one vertical wall was held at 0°C
(or 2°C) while the opposing wall was maintained at
8°C (or 6°C). Aspect ratios of 1 and 3 were considered.
Robillard and Vasseur [11] performed a numerical
study of a cold water-filled square enclosure in which
one vertical wall was kept at 0°C while the temperature
of the other vertical wall was varied between 4 and
12°C. Thermal boundary conditions on the horizontal
walls were either linear in temperature or adiabatic.
Seki et al. [12] carried out experimental and numerical
work on the same problem for an enclosure height of
100 mm. In ref. [12] aspect ratios of 1, 2, 5, 10 and 20
were considered. It was noted that aspect ratios near
unity resulted in the maximum heat transfer. Recently,
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NOMENCLATURE
cp constant pressure specific heat X dimensionless horizontal coordinate,
g gravitational acceleration x/L
k thermal conductivity X horizontal coordinate
L length of enclosure side y dimensionless vertical coordinate, y/L
Nu(x, y) local Nusselt number, equation ¥y vertical coordinate.
(18)
Nu(x) vertically averaged Nusselt number, Greek symbols
equation (19) o thermal diffusivity
P modified pressure, 5+ p.gy a constant in density—temperature
P pressure relation, equation (7)
Pr Prandtl number, v/o B coefficient of thermal expansion
q exponent in density—temperature v kinematic viscosity
relation, equation (7) 4 dimensionless vorticity, EL%/v
q’ heat flux 3 vorticity
R density distribution parameter, p density
(T =TT, — T ¢ dimensionless temperature,
Ra Rayleigh number, (T-TH/(T,—T)
gpm L3(To— T/ peva v dimensionless streamfunction, §/v
T temperature ¥ streamfunction.
t dimensionless time, 1v/L>
f time Subscripts
u dimensionless horizontal velocity, c cold wall
ullv h hot wall
u horizontal component of velocity m density extremum
v dimensionless vertical velocity, 7L/v 0 reference state
v vertical component of velocity 1/2 vertical mid-plane of the enclosure.
Inaba and Fukuda [13, 14] investigated the effect of aT
inclination angle on the natural convection of cold /e 0
water in a rectangular enclosure both experimentally T
and numerically. In ref. [13] it was found that the two
counter-rotating eddies are strongly influenced by the
angle of inclination.
The present study addresses the steady convection
of cold water in a square enclosure. The vertical walls _ B
are maintained at different temperatures while the Th Te L
horizontal boundaries are insulated. A non-dimen-
sional parameter (similar to the one used first by
Gebhart and Mollendorf [15] and later by Altimer [5] _
and Nguyen et al. [6]) is used to characterize the YA
orientation of the vertical wall temperatures with
respect to the extremum temperature. This parameter = k2
also characterizes the distribution of buoyancy forces x B
in the enclosure and hence provides a very convenient T .o
and concise generalized framework for studying the oy
effects of changing wall temperature. Numerical cal- e L |

culations are made to separately study the effects of
Rayleigh number and buoyancy force distribution.
The flow structure and temperature fields are dis-
cussed as well as the overall heat transfer.

2. MATHEMATICAL FORMULATION

The configuration considered here is that of a
square enclosure of side length L. The vertical walls

FiG. 1. Differentially heated square enclosure.

are maintained at temperatures T, and 7, while the
horizontal walls are insulated, Fig. 1. The enclosure
is supposed sufficiently long in depth normal to the
plane of Fig. 1 that the flow field is essentially the
same in planes of different depth. The enclosed fluid
is pure water and the temperature range of interest



Natural convection heat transfer in a square enclosure containing water near its density maximum

is, 0°C < T. < T, < 20°C, where density inversion
phenomena are significant.

2.1. Governing equations
In formulating the governing equations the fol-
lowing assumptions are made:

{1) the flow is laminar and two-dimensional;

(2) physical properties, except for the density in the
buoyancy force term, are constant and are evaluated
at the cold wall temperature, T ;

(3) viscous dissipation is negligible.

With these assumptions, the governing equations,
in their unsteady form, are

312 817
wta=0 @
Da 1 aﬁ' -
D7 EF +wW ()]
Do 15 s P
D *E 37 +¥Vp ~:g 3)
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Defining the modified pressure, j = §’ + p. g7, yields
op _op

AT

Initially, the fluid is assumed to be motionless and

at the uniform temperature (T,+ T.)/2. The corre-
sponding initial and boundary conditions are

—9gp.. )

Fr=90:

— - = —h+Tc

H=0=0, T= 2

t>0:

I (6
T(O’ }’) = Th’ T(L’ y) =

oT oT _

6_)7( ,o)zgf(x,L)_O

#=0=0, on the boundary

Many correlations have been used to represent the
density of cold water as a function of temperature, e.g.
Kell {16], Chen and Millero [17] and Gebhart and
Mollendorf [18]. Though most of these correlations
are in close agreement, the correlation of Gebhart and
Mollendorf is especially simple and very accurate. It
has been widely used and will be adopted here because
of its simple form. In ref. [18] the density of pure water
at atmospheric pressure is given as

p=pull—,|T—T,|1 (M

where p,, = 999.9720 kg m~3, a; = 9.297173 x 10~¢
CCy 4, T, = 4.029325°C and g = 1.894816. In the
range 0 < T < 20°C this equation agrees with the very
precise density relation of Kell [16] to within 6 p.p.m.
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Introducing equations (5) and (7), equations (2) and
(3) become

Di 1067

e, B — 2-
B =~ 55 TV ®)
Di 105 g%pPm s =
DI~ gt p W Tal
AT— T[]+ W%, (9)

2.2. Stream function-vorticity (ff —&) formation
The pressure is eliminated by cross-differentiating
and combining equations (8) and (9). Also, the
streamfunction ¥ and vorticity £ are defined as
61/7 o

0 Yo 5 =V

ox (19

Defining the non-dimensional variables

_x L7
x_L’ y—L
il oL T-T.
u—~‘—’-, p=—, d:»:Th_.c
v EL? v
l/’—‘;, 4 7 l—zz

the governing equations in dimensionless form
become

D Ra
R —RI - L v ()
D¢ 1
Do ® (12)
Vi = —& (13)
The initial and boundary conditions take the form
t=0:
u=v=0, ¢=1/2
t>0:
90, =1, ¢,y = (14
o¢ _ 09 _
g(x,o) = 5;("’ =0
W _W_
Y= il v 0, on the boundary.

Additional dimensionless parameters appearing in
equations (11) and (12) are the Rayleigh and Prandti
numbers

T Ty
gﬂm@‘L (Th Tc Pr=-—

Ra= s
PV a

and the density distribution parameter
T‘m - 7—-'c

R=Th-—-

(15)

This parameter will be seen to be very important due
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to its fundamental effect on the flow field and heat
transfer in the enclosure and is essentially equivalent
to the ‘inversion parameter’ used by Nguyen et al. [6]
in their horizontal annulus study. The density dis-
tribution parameter essentially fixes the orientation of
the maximum density temperature T, with respect to
the vertical wall temperatures 7, and T,. As shown in
ref. [9]thecase R < 0 (T, > T. > T.,) results in density
increasing monotonically with x across the enclosure.
This density distribution results in a clockwise recir-
culation pattern. When R > 1 (T, > T, > T.) the dis-
tribution is reversed and hence a counter-clockwise
pattern results. When R is in the range 0 < R < 1 the
wall temperatures T, and T. straddle the maximum
density temperature T,,. In this case as x varies from
0 to 1 density increases to a maximum p = p,, at
T = T, and then decreases. As a result, maximum
density fluid at temperature T, lies between warm low
density fluid near the hot wall and cool fluid, also of
relatively low density near the cold wall. Hence this
heavier fluid at T = T,, in the enclosure interior
descends while the lighter fluid adjacent to the vertical
boundaries ascends, giving rise to a pair of counter-
rotating vortices arranged horizontally in the enclo-
sure. It will be seen later, however, that this two-cell
structure may not occur for R < 1 and R = 0 due to
viscous effects.

The symmetry of the density equation (7) with
respect to the extremum temperature suggests that i
and ¢ may also be symmetric in some fashion. In fact
it can be easily shown that the system, equations (11)—
(14), exhibits the symmetry properties

¢(X, Vs R) = 1“‘/’(1—)‘,)/’ I_R)

Hence the flow and temperature fields for the case
R=1/2+AR can be obtained from the case
R = 1/2— AR using equations (16). In particular, for
R = 1/2, equations (16) state that the flow structure
is symmetric with respect to the vertical centerline of
the enclosure, x = 1/2.

(16)

2.3. Heat transfer
The local heat flux in the horizontal direction in the
enclosure can be expressed as the superposition of
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conductive and convective modes, i.e.

R S
9" = —k—Z +p.c,(T-Ta.

ox an
In dimensionless form, this becomes
//L a

Nu(x, y) = 2 % | prou. (18)

k(T.—T.)  ox

Then the Nusselt number averaged over a vertical
cross-section is

Nu(x) = f Nu(x, y)dy. (19)

3. NUMERICAL SOLUTION

Numerical results were obtained by solving equa-
tions (11)-(13) subject to the accompanying boundary
and initial conditions (14) by a finite-difference
method. A false-transient approach was used to
obtain steady-state solutions. First-order forward
differences were used to approximate time derivatives
while central difference approximations were used for
spatial derivatives. The resulting set of algebraic equa-
tions was solved by the alternating direction implicit
(ADI) technique which yields a system of algebraic
equations in tridiagonal form to which the Thomas
algorithm [19] can be applied. The size of the time
step which led to a stable calculation in the present
work depended upon grid size, Rayleigh number and
the initial conditions. The results for the lowest Ray-
leigh number considered (Ra = 10%) were obtained
from a rest initial condition (Y =&=u=v=0,
¢ = 1/2). For higher values of Ra, the steady solution
for a somewhat smaller Rayleigh number was used as
the initial state. It is also noted that the steady-state
solution was found to be independent of the choice of
initial condition.

For each case (Ra, R) mesh refinement was con-
tinned until adequate pointwise convergence was
observed in i, £ and ¢ as well as convergence of global
heat transfer. The mesh size required for satisfactory
convergence was found to be strongly dependent on
Ra, as shown in Table 1, for the case R =2/3. In
Table 1, Nu, and Nu, were obtained from equation

Table 1. Convergence of Nu and i with mesh size, R = 2/3

Ra Mesh Nu, Nuy)» Nu, W max W imin
103 21x21 1.018 1.019 1.018 0.0386 —0.00027
21 x 21 1.600 1.618 1.603 0.260 —0.0037
104 31 %31 1.601 1.612 1.609 0.260 —0.0036
41 x 41 1.602 [.612 1.610 0.260 —0.0036
21x21 3.323 3.356 3.326 0.698 —0.070
10° 31x31 3.334 3.347 3.348 0.703 —0.067
41 x 41 3.344 3.348 3.349 0.706 —0.065
21 x21 5.860 6.854 6.566 1.431 —0.778
10 31x31 6.554 6.546 6.513 1.372 —0.609
41x41 6.560 6.525 6.552 1.386 —0.579
61 x 61 6.561 6.534 6.560 1.390 —0.562
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(19) with x =0 and 1, respectively. For the case
R = 1/2, advantage was taken of the symmetry prop-
erty (16), so that calculations were necessary for one-
half of the enclosure only. All results were obtained
with Pr = 13.0.

4. RESULTS AND DISCUSSION

4.1. Streamfunction and temperature

The steady flow patterns which result for the square
enclosure containing cold water are in general a conse-
quence of the local balance between buoyancy, viscous
and inertia forces. For small values of Ra, however,
inertia effects are relatively unimportant so that an
approximate balance between viscous and buoyancy
forces results. Figure 2 shows the results for ¢ at
Ra = 10° for values of the density distribution par-
ameter R = 0.4, 1/2, 0.55, 2/3 and 3/4. For Ra = 10°
the temperature field deviates from the pure con-
duction field, ¢ = 1 —x, only slightly due to con-
vective effects. However, the perturbation on the pure
conduction temperature field due to convection
increases in magnitude with |R—1/2|. In the case,
R = 1/2, the hot and cold wall temperatures perfectly
straddle T,. From the symmetry relations (16) the
maximum density contour (coinciding with the tem-
perature contour, ¢, = R=1/2) is located at the
enclosure mid-plane x = 1/2. Dense fluid near x = 1/2
falls while less dense fluid adjacent to the hot and cold
walls rises. This results in a symmetric pair of counter-
rotating vortices in the left and right halves of the
enclosure. As R increases (decreases) the maximum
density contour moves toward the hot (cold) wall.
As a result the counter-clockwise-rotating cell on the
right in the case R = 0.4 becomes stronger and larger
at the expense of the clockwise-rotating cell on the left
as R increases. For R = 2/3 the cell on the left has
divided into two separate clockwise-rotating cells in
the upper and lower left-hand corners of the enclo-
sure. In this case even though the maximum density
contour (¢, =2/3) is located approximately at
x = 1/3, upflow on the hot wall occurs only near the
corners of the enclosure. The circulation of the coun-
ter-clockwise right-hand vortex has become so strong
that it drags (by virtue of the fluid’s viscosity) rela-
tively light fluid downward along the hot wall, over-
powering the upward buoyancy force there. When
¢m = R = 3/4, even the two corner cells are eliminated
by the strong counter-clockwise-rotating cell on the
right resulting in a completely unicellular flow. In the
instance R = 1, density increases with temperature
and hence decreases with x everywhere in the enclo-
sure resulting in a single counter-clockwise-rotating
cell.

Figure 3 shows the ¢ and ¢ fields for R = 1/2 and
Ra = 10* and 10°. Note that the bicellular flow struc-
ture observed for Ra = 103, R = 1/2, Fig. 2, persists
for 10* < Ra < 10° with the cells becoming more
angular in shape. Due to symmetry (16) the flow in
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the left and right halves of the enclosure is identical
except for the sense of rotation. Notice, Fig. 3, Ru =
10, that the ¢-field is developing boundary layer-
like characteristics with increasing Ra near x = 1/2
as well as near the vertical walls. The large gradients
in temperature near x = 1/2, y < 1, are due to the
intense circulation of the two counter-rotating cells
which deposits warm fluid from the hot wall and cool
fluid from the cold wall in the top-center region of the
enclosure.

In the case R =0.55, Fig. 4, there is no spatial
symmetry. The maximum density contour ¢, =
R = 0.55 has now shifted (from x = 1/2 for R = 1/2)
toward the hot wall. With increasing Ra the larger
counter-clockwise cell adjacent to the cold wall
becomes more dominant. Cool fluid is swept across
the upper boundary and into the upper left-hand cor-
ner of the enclosure. This shifts the maximum density
contour ¢, = 0.55 toward the hot wall in the upper
half of the enclosure. As a result, for Ra = 10° there
is no upflow along the upper portion of the hot wall
because the strong counter-clockwise vortex over-
comes the (upward) buoyancy force in the fluid
directly adjacent to the upper portion of the hot wall.
It will be seen later that this direct contact of the
cooler fluid with the upper section of the hot wall
substantially increases heat transfer across the enclo-
sure above the symmetrical, R = 1/2, case. Note also
that at higher values of Rayleigh number (Ra = 10%)
the structure of the flow and temperature fields to the
right of the maximum density contour, ¢,, = 0.55, are
developing some characteristics which are observed in
the convection of Boussinesq fluids at large Ra. For
example it is observed, Fig. 4, Ra = 105, that fluid in
the large counter-clockwise cell exhibits an increasing
degree of density stratification with increasing Ra.
Note, however, that here, warm fluid underlies cooler
fluid since density is increasing with temperature for
¢ < ¢, = 0.55. The basic structure of the flow field
for R = 2/3 exhibited the same features as the case
R = 0.55 with the left-hand clockwise-rotating cell
confined to a smaller region in the lower left-hand
corner of the enclosure. For R = 2/3 the small cell in
the upper left-hand corner at Ra = 10* (Fig. 2) does
not appear for 10 < Ra < 108 For R = 0.75 the flow
consists of a single counter-clockwise vortex for
Ra = 103, Fig. 2, while for 10* < Ra < 10° the flow
structure is similar to the case R = 2/3, i.e. a weak
clockwise rotating cell is observed in the lower left-
hand corner of the enclosure.

4.2. Heat transfer

Table 2 lists the vertically averaged Nusselt number
(19) for six values of R in the range 0.4 < R < 1 and
Ra = 10°%, 104, 10° and 10°. Due to the symmetry
in the temperature field (16) heat transfer is sym-
metric with respect to R = 1/2, hence Nu(R = 0) =
Nu(R = 1), Nu(R = 1/3) = Nu(R = 2/3), etc. Figure
5 shows the variation of Nu with R for fixed Ra.
The most striking feature of this figure is the
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R=2/3

8.9
1.7

3
44,1

R=

3/4

FiG. 2. Streamfunction (i x 10%) contours for Ra = 10°.

minimum in heat transfer at R == 1/2. This minimum
has also been observed in previous works, however,
typically, the variation of Nu with increasing T, is
examined for fixed T.. When Nu is displayed in this
manner both R and Ra are varying. In Fig. 5 the
effect of the density distribution parameter is clearly
displayed without introducing additional Rayleigh
number effects. The minimum at R = 1/2 in Fig. 5 is
due to the symmetric, dual-cell flow structure which
results when T, and T, straddle the maximum density
temperature 7T,. The dual-cell structure prohibits
direct convective transfer between the hot and cold
walls. Each cell behaves like an insulator preventing

warm (cool) fluid from the hot (cold) wall from com-
ing in contact with the cold (hot) wall. The only direct
thermal communication between the two walls occurs
near x = 1/2, where the warm and cool streams meet
and energy is transferred primarily by conduction.
Heat transfer increases very sharply for R-values away
from R = 1/2 when Ra is large because then one of
the two cells in the enclosure wets both walls (see Fig.
4, Ra = 10°). Figure 6 shows the variation of Nu with
Ra for various values of R. For large Ra the heat
transfer behavior is similar to that observed for a
Boussinesq fluid, that is
Nu oc Ra®?®
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Ra=10°
F1G. 3. Streamfunction ( x 10°) and temperature (¢ = 0(0.1)1) contours for R = 1/2.

independent of R. The behavior for large Ra is seen
to blend smoothly into the conduction dominated
regime, Nu ~ 1, for smaller Ra.

4.3. Comparison with previous work

In earlier work on cold water enclosure convection,
heat transfer results are often presented with the cold
wall temperature 7. held fixed while T, is varied. If
this is done both Ra and R are varying parameters.
For completeness the results of the present calculation
are plotted in this way, Fig. 7, along with the constant
viscosity results of Watson [8) and the variable prop-
erty results of Inaba and Fukuda [13]. In ref. [8] cal-
culations of Nu were obtained for a square enclosure
with 7. = 0°C, Pr = 13.7 and

glp.IL’
VoL

while in ref. [13] 7, = 0°C, gL3/v? = 1.02x 107 and
Pr =13. Note that the present results are in good
agreement with both refs. [8, 13] for T}, < 8°C, beyond
which both refs. [8, 13] yield lower estimates of the
heat transfer. In the case of Watson’s results, one
factor which may contribute to this discrepancy is the
density—-temperature relation used. The relation due
to Watson differs from the very accurate p — T'relation

=10°K"!

of Kell [16] by as much as 26 p.p.m. while equation
(7) is accurate to within less than 6 p.p.m. in the range
0-20°C. Recall that the density difference between 0
and 4°C (and hence the sole driving force for con-
vection) is only about 130 p.p.m. Also, the value of 8,
used is critical. In the comparison with ref. [8], at each
value of T}, the present value of Ra is calculated as

o, T¢
Rg=Pm*1in

10° = 136.647T¢
pel Bl "

20

where the property value . = —6.805x 10~ K ~'has
been used [20]. The value of §. given by Watson’s
p—T relation is —8.94x10~*K~! which is about
30% larger. The value given by equation (7) is
f.= —6.1x10"°K~". Using a larger value of 8, in
equation (20) would result in a smaller value of Ra
and hence smaller values of Nu for the present cal-
culation in the comparison of Fig. 7. The discrepancy
observed between the present results and the results
of Inaba and Fukuda [13] might also be due, in part,
to differences in the p—T relation used. However, it is
also likely that differences are present due to property
(v,k) variations with temperature which are
accounted for by Inaba and Fukuda but are not
accounted for in the present study. Also, some of the
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Ra = 10*

-240

=

Ra=108

FiG. 4. Streamfunction (i x 10%) and temperature (¢ = 0(0.1)1) contours for R = 0.55.

Table 2. Nusselt number variation with R and Ra

R
Ra 0.4 12 0.55 23 3/4 1

10° 1.007  1.0009 1.002 1018 1038 1119
10 1391 1076 1202  1.608 1834 2278
10° 2853 2080 2416 3347 3823 4709
106 5685  4.090 4860 6560  7.445  9.195

discrepancy may be due to discretization error in the
calculation of ref. [13]. Inaba and Fukuda use a
21 x 21 finite difference grid and upwind differencing
to make computations for Ra as large as 3.5 x 10°.
Note, from Table 1 that at Ra = 10° a 21 x 21 mesh
is quite inadequate to resolve Nu even when employing
the more accurate central difference approximation.
Figure 8 shows the horizontal temperature profile
at the enclosure midheight for R=1/2 and Ra =
6.3 x 10 for ref. [13] and the present study. Note that
the results of ref. [13] show a quite mild horizontal
temperature gradient near the center of the enclosure,
x =~ 1/2, while the present results suggest that a ther-
mal boundary layer is beginning to form where the
two symmetrical counter-rotating rolls meet (see also
Fig. 3). The profile due to ref. [13] appears to have

much the same shape as one would expect in a uni-
cellular Boussinesq case, that is, most of the tem-
perature change occurs near the heated and cooled
walls. For reasons which are not clear the temperature
profile of ref. [13] gives very little evidence of the dual-
cell structure even though the results of ref. [13] for
agree quite well with the present findings.

5. CONCLUSIONS

The flow structure, temperature field and heat
transfer in a square enclosure containing cold water
have been calculated numerically. A parameter, R,
introduced through scaling of the governing
equations, was used to fix the orientation of the hot
and cold wall temperatures with respect to the extre-
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R= m - Te
Th -Te

FIG. 5. Heat transfer variation with R.

mum temperature. This parameter was also found to
be convenient for characterizing the distribution of
density and hence the buoyancy force distribution in
the enclosure. For 0 < R < 1 the relationship between
fluid density and temperature in the enclosure has an
extremum and hence regions of the flow field exhibit
buoyancy force reversals which under some cir-
cumstances result in multicellular flows. The flow was
shown to be symmetric (in the sense of equations (16))
with respect to the density distribution parameter
value R = 1/2. The effects of R (0 < R < 1) and Ray-
leigh number (10° < Ra < 10°) on the flow and heat
transfer were examined separately. It was found that
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Fukuda {1984)
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FiG. 7. Heat transfer variation with T, 7, =0°C: ———,
Watson [8], g|B.L3/v.a, = 10°K™!, Pr=13.7; ——, Inaba
and Fukuda [13], ¢gL’v:=1.02x107, Pr=13; —,
present.

while R determines, to a large extent, the number and
sense of circulation of the cells in the flow, Rayleigh
number affects, for the most part, only the cell shapes
and locations within the enclosure. Boundary layer
effects were noted for large values of Ra. A rather
pronounced minimum in cross-cavity heat transfer
was observed for R = 1/2 in which case the hot and
cold wall temperatures straddle the extremum tem-
perature. The resulting symmetrical, counter-rotating,
dual-cell flow structure greatly inhibits convective
transfer between the heated and cooled walls. Com-
parisons with previous cold water studies indicated
good agreement in the heat transfer only for R < 1/2.

Nu

FIG. 6. Heat transfer variation with Ra.
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F1G. 8. Horizontal temperature profile at y = 1/2, Ty = 8°C,
T, = 0°C: ~——, Inaba and Fukuda [13], gL?/¥? = 1.02x 107,
Pr =13;——, present.

Substantial differences from the present results were
found in the temperature field behavior predicted in
ref. [13].

Acknowledgement—The authors wish to thank the National
Science Foundation for its support under grant number
MEA 84-14322. The authors also wish to acknowledge
the helpful comments of Professor B. Gebhart and Ms E.
Mitchell for her efficient preparation of the manuscript.

REFERENCES

1. R. E. Forbes and J. W. Cooper, Natural convection in
a horizontal layer of water cooled from above to near
freczing, J. Heat Transfer 97, 47-53 (1975).

2. P. Vasseur and L. Robillard, Transient natural con-
vection heat transfer in a mass of water cooled through
4°C, Int. J. Heat Mass Transfer 23, 1195-1205 (1980).

3. L. Robillard and P. Vasseur, Transient natural con-
vection heat transfer of water with maximum density
effect and supercooling, J. Heat Transfer 103, 528-534
(1981).

4, L. Robillard and P. Vasseur, Convective response of a
mass of water near 4°C to a constant cooling rate applied
on its boundaries, J. Fluid Mech. 118, 123-141 (1982).

Lin and M. W. NANSTEEL

5. L. Altimer, Convection naturelle tridimensionnelle en
milieu poreux satur par un fluide presentant un
maximum de densité, Int. J. Heat Mass Transfer 27,
813-824 (1984).

6. T. H. Nguyen, P. Vasseur and L. Robillard, Natural
convection between horizontal concentric cylinders with
density inversion of water for low Rayleigh numbers,
Int. J. Heat Mass Transfer 25, 1559-1568 (1982).

7. D. S. Lin and M. W. Nansteel, Natural convection in a
vertical annulus containing water near the density
maximum, J. Heat Transfer (1987}, in press.

8. A. Watson, The effect of the inversion temperature on
the convection of water in an enclosed rectangular cavity,
Q. J. Mech. Appl. Math. 25, 423-446 (1972).

9. M. W. Nansteel, K. Medjani and D. S. Lin, Natural
convection of water near its density maximum in a
rectangular enclosure: low Rayleigh number calcula-
tions, Physics Fluids 30(2), 312-317 (1987).

10. V. S. Desai and R. E. Forbes, Free convection in water
in the vicinity of maximum density, Envir. Geophys. Heat
Transfer 41-47 (1971).

11. L. Robillard and P. Vasseur, Effet du maximum de
densité sur la convection libre de I’eau dans une cavité
fermée, Can. J. Civil Engng 6(4), 481-493 (1979).

12. N.Seki, S. Fukusako and H. Inaba, Free convective heat
transfer with density inversion in a confined rectangular
vessel, Wirme- und Stoffiibertragung 11, 145-156 (1978).

13. H. Inaba and T. Fukuda, Natural convection in an
inclined square cavity in regions of density inversion of
water, J. Fluid Mech. 142, 363-381 {1984).

14. H. Inaba and T. Fukuda, An experimental study of
natural convection in an inclined rectangular cavity filled
with water at its density extremum, J. Heat Transfer 106,
109-115 (1984).

15. B. Gebhart and J. C. Mollendorf, Buoyancy-induced
flows in water under conditions in which density extrema
may arise, J. Fluid Mech. 89, 673707 (1978).

16. G. S. Kell, Precise representation of volume properties
of water at one atmosphere, J. Chem. Engng Data 12,
6669 (1967).

17. C. T. Chen and F. J. Millero, The specific volume of sea
water at high pressures, Deep Sea Res. 23, 595-612
(1976).

18. B. Gebhart and J. C. Mollendorf, A new density relation
for pure and saline water, Deep Sea Res. 24, 831-848
(1977).

19. A.S. Householder, The Theory of Matrices in Numerical
Analysis. Blaisdell, New York (1964).

20. CRC Handbook of Chemistry and Physics. Chemical
Rubber Company, Cleveland, Ohio (1981).

CONVECTION THERMIQUE NATURELLE DANS UNE CAVITE CARREE CONTENANT
DE L’EAU PRES DE SON MAXIMUM DE DENSITE

Résumé-—On étudie numériquement la structure de 'écoulement permanent, la température et le transfert
thermique dans une cavité carrée chauffée et refroidie sur les parois verticales opposées et qui contient de
Peau froide proche de son maximum de densité. L’interprétation des résultats repose sur un paramétre
adimensionnel de distribution de densité qui fixe Porientation des températures des parois chaude et froide
par rapport 4 Pextrémum de température et qui sert aussi 4 caractériser la distribution de la force de
flottement dans la cavité. Les structures multicellulaires sont observées pour certains domaines du paramétre
de distribution de densité indépendamment de la valeur du nombre de Rayleigh (10° < Ra < 10°). Leffet
du paramétre de distribution de densité sur le transfert a travers la cavité est trés sensible et on le discute
relativement aux changements de structure de I’écoulement. Des comparaisons sont faites avec les études
antérieures.



Natural convection heat transfer in a square enclosure containing water near its density maximum

WARMEUBERTRAGUNG DURCH NATURLICHE KONVEKTION IN EINEM
QUADRATISCHEN GEFASS, DAS WASSER IM BEREICH DES
DICHTEMAXIMUMS ENTHALT

Zusammenfassung—Die stationdren Stromungsstrukturen, die Temperaturverteilung und die Wirme-
ibertragung in einem quadratischen GefaB, das auf zwei gegeniiberliegenden Seiten beheizt bzw. gekiihlt
wird und kaltes Wasser im Bereich des Dichtemaximums enthilt, werden numerisch untersucht. Die
Auswertung der Ergebnisse konzentriert sich auf den dimensionslosen ‘Dichteverteilungs-Parameter’, der
die Lage der Temperaturen an der heiBen bzw. kalten Wand in Bezug auf die Extremtemperatur festlegt und
auflerdem die Auftriebsverteilung im Behélter beschreibt. Fiir bestimmte Bereiche des Dichteverteilungs-
Parameters werden unabhingig von den Werten der Rayleigh-Zahl (10° < Ra < 10%) multizellulare
Stréomungsstrukturen beobachtet. Es wurde festgestellt, daB der EinfluB des Dichteverteilungs-Para-
meters auf die Warmeiibertragung im GefdBl von grundsitzlicher Bedeutung ist; dieser EinfluB wird
im Zusammenhang mit der sich d4ndernden Stromungsstruktur diskutiert. Es wurden Vergleiche mit
Untersuchungen angestellt, welche in der Literatur beschrieben sind.

CBOBOJHOKOHBEKTUBHBLIN TEILJIONEPEHOC B NOJIOCTU KBAZIPATHOI'O
CEUYEHMS, 3ATTIOJITHEHHON BOJOMN, ITJIOTHOCTH KOTOPOU BJIM3KA K
MAKCUMAJIBHON

Annoramas—YuCIeHHO MCCIIEAYIOTCA CTAIMOHAPHBIE CTPYKTypa TCYEHHS, TEMIIEPATYPHOE NOJIE M Tell-
TIONEPEHOC B HArpeBaeMoM N OXJIaXIaeMOH BIONb BEPTHKAJLHBIX NPOTHBONOJIOXKHBIX CTEHOK MOJIOCTH
KBa/IPaTHOTO CE4EHUS], 3aMOJTHEHHOM XOJIOAHOM BOIOM, MIOTHOCTh KOTOPO#H O/M3ka K MakCHMabHOU. B
KayecTBE PEXHMHOro mapameTpa JUIS WMHTEPIpPETAUMH pe3yJbTATOB BhOpaH Oe3pa3MepHBId napaMeTp
pacnpesesieHHs IUIOTHOCTH, XapaKTEpH3YIOIMiA OTIHYHE TEMNEPATYP XONOMHON M ropsueil CTEHOK OT
IKCTPEMATILHON TEMIIEPATYPhI, a Takke pacnpeneieHHe NOTbeMHON CHIIBI B NOJIOCTH. B onpeeneHHOM
IMana3oHe M3MEHCHMS apaMeTpa PacpeAeIeHNs IUIOTHOCTH, HE 3aBUCAIIEM OT BEeJMYMHbI yncia Pases
(10 < Ra < 10°), Habmonar0TCsl MHOTOSMEUCTBIE CTPYKTYPHI TeueHus. QO6HApYXeHa OTYET/IMBAs 3aBH-
CHMOCTb TEIUIONEPEHOCA MONEPEK MOJOCTH OT BEJIMYMHBI HAPAMETPA pPACHpEleeHHs IUIOTHOCTH.
Ob6cyxaaercs W3MeHEHHe 3TOH 3aBHCHMOCTH NPH H3MEHEHHM CTPYKTYDHI TedeHus. [IpoBeneHo cpasse-
HHE MOJIyYEHHEBIX pe3yIbTATOB C aHAJOTHYHBIMH ONYOJIMKOBAHHBIMH B JIMTEpaType JaHHBIMH.
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